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The Hessian for the quasi-one-dimensional Euler equations is derived. A pressure minimi-
zation problem and a pressure matching inverse problem are considered. The flow sensi-
tivity, adjoint sensitivity, gradient and Hessian are calculated analytically using a direct
approach that is specific to the model problems. For the pressure minimization problem
we find that the Hessian exists and it contains elements with significantly larger values
around the shock location. For the pressure matching inverse problem we find at least
one case for which the gradient as well as the Hessian do not exist. In addition, two formu-
lations for calculating the Hessian are proposed and implemented for the given problems.
Both methods can be implemented in industrial applications such as large scale aerody-
namic optimization.
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1. Introduction

Aerodynamic optimization problems are computationally massive and highly ill-conditioned. In the past two decades
they have matured and are now an integral part of design in the aerospace industry. Mathematically these are optimal design
problems governed by partial differential equations. In this work we assume that the initial guess of the shape design prob-
lem is in the basin of attraction of the desired global minimum, and therefore local gradient methods can be used to pursue
the optimal solution. Jameson [1] introduced the idea of using Computational Fluid Dynamics (CFD) to solve the direct and
adjoint flow models. By the adjoint method, the solution of a single adjoint problem allows to determine the gradient of an
objective function with respect to the design parameters, regardless of the dimension of the design space. Beux and Dervieux
[2] first gave examples of compressible flow shape derivatives computed by the adjoint of the discrete operator on unstruc-
tured meshes. Frank and Shubin [3] considered several shape optimization strategies and took as a test case the quasi-one-
dimensional compressible Euler equations. Iollo and Salas [4] studied the case of flows with shocks. They found that a bound-
ary condition at the shock is needed for the adjoint equation. Giles and Pierce [5] determined this boundary condition and
the analytical adjoint solution for the quasi-one-dimensional compressible flow in a nozzle. Additional references and a
more complete review can be found in [6].

In most practical scenarios quasi-Newton methods are used in combination with the adjoint method (or sensitivity equa-
tion method) to compute the search direction. However, for large scale ill-conditioned problems quasi-Newton methods are
slow at the start, and may take many iterations to build a good Hessian approximation. In practice it may not be affordable to
allow enough iterations for the quasi-Newton to reach a good Hessian approximation, resulting in poor convergence. An
approximation of the Hessian that is constructed from the governing equations and the objective function, can serve as a
starting point for quasi-Newton methods. Such an initial approximation will be much more accurate than the identity matrix
. All rights reserved.
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that is used by default in practice. Also, other preconditioning techniques (not based on quasi-Newton) can be devised based
on the Hessian form.

A good Hessian approximation is important in particular for large scale industrial optimal design problems where the
governing equations are solved using CFD. The Hessian for such problems is typically highly ill-conditioned as analyzed
for example by Arian and Ta’asan in [7]. The gradient serves as a very poor search direction, while the gradient pre-multi-
plied by the approximated inverse of the Hessian serves as an excellent search direction close enough to the solution as dem-
onstrated by Arian and Vatsa in [8]. However, the techniques used in [7] and [8] are not practical in the industrial setting in
which the governing state equations are more difficult to analyze. In practice we would like to use the available resources,
such as sensitivities and adjoint solutions, to generate an approximated Hessian numerically.Another approach is to use
automatic differentiation tools to generate the Hessian in the discrete level automatically (more details can be found in
[9,10]).

In this paper we compute the Hessian analytically for two minimization problems governed by the quasi-one-dimen-
sional Euler equations. An analytical form may reveal many unknowns on such problems, e.g., does the Hessian exist for
transonic flow with a shock? What is the effect of the shock on conditioning? We examine three different methods to build
the Hessian. The first method, called ‘‘the direct approach” in this paper, is specific to the problem at hand. Using the direct
approach the analytical Hessian is derived for a transonic flow with a shock. The two additional methods are based on the
adjoint and sensitivity equations, and can be applied in practice for large scale aerodynamic optimization problems. We
demonstrate the application of these methods for supersonic flow and show numerically that all three methods result in
the same Hessian matrix (up to a small truncation error). The two adjoint based methods have different computational cost.
A preliminary analysis shows that one method might be numerically unstable when shocks are present in the flow. The
method that is likely to be more stable is also more computationally intensive.

Our point of departure is the paper by Giles and Pierce [5]. In that paper the adjoint solution is derived analytically using
Green’s function technique. We recover the adjoint solution in [5] and in addition compute the sensitivity solutions.

We present results for two different objective functions. The first is a standard pressure minimization objective function
as considered in [5]. The second corresponds to an inverse problem in which the difference in L2 norm between the pressure
and a given, target, pressure distribution is to be minimized.

The paper is organized as follows:
In Section 2 the mathematical formulation is presented.
In Section 3 the direct approach is discussed and key observations are made regarding the existence of the Hessian in the
presence of a shock.
In Section 4 computational results of the direct method are discussed.
In Section 5 the two adjoint based methods are derived.
In Section 6 numerical results of the adjoint based methods are presented for supersonic flow conditions.
In Section 7 the paper is concluded with a discussion.

2. Formulation

The state variable, U, is defined to be the triplet composed of the density, mass flux, and total energy density:
U ¼ ðq;qq;qEÞT :
We consider the compressible Euler equations in a quasi-one-dimensional approximation. The flow takes place inside a noz-
zle of height hðxÞ, where x is the spatial coordinate (see Fig. 1). The optimal design problem consists of minimizing an objec-
tive function, JðUÞ, subject to state equations:
Fig. 1. The unperturbed nozzle.
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min
hðxÞ

JðUÞ

RðU;hÞ ¼ 0
ð1Þ
with
RðU;hÞ ¼ d
dx
ðhFÞ � dh

dx
P; ð2Þ
and
F ¼ ðqq;qq2 þ p;qHqÞT ; P ¼ ð0;p;0Þ;
where p is the static pressure, and qH is the total enthalpy density.
In this paper the objective function is defined to be either the integral of the pressure distribution across the domain

X � R
JðUÞ ¼
Z

X
pdx: ð3Þ
or the L2 norm of a pressure difference with respect to a reference pressure distribution p�:
JðUÞ ¼
Z

X

1
2
ðp� p�Þ2dx: ð4Þ
These two objective functions are paradigms of typical aerodynamic optimization problems such as drag minimization and
inverse design.

2.1. The perturbed problem

The gradient and Hessian are calculated by first and second order perturbations, respectively, to the non-linear problem
at a given design point. The perturbation of the original minimization problem results in the following linear sub-problem:
min
~h

JðU þ uÞ

Lu� f ¼ 0
ð5Þ
where U is given, u is a perturbation to U, f ¼ f ð~hÞ, and ~h is perturbation of h.
The linear operator, L, has the following explicit form:
Lu ¼ d
dx
ðhAuÞ � dh

dx
Bu;
where A ¼ oF=oU and B ¼ oP=oU. The right hand side of the linearized problem has the following explicit form:
f ¼ d~h
dx

P � d
dx
ð~hFÞ: ð6Þ
The boundary conditions for the above perturbation equations, Lu� f ¼ 0, depend on the boundary conditions of the unper-
turbed problem.

2.1.1. Boundary conditions
At the inlet, if the unperturbed problem is subsonic, total pressure and total enthalpy are fixed, and therefore their per-

turbation boundary condition is homogeneous. If the inlet is supersonic all the unperturbed flow variables are fixed, and
therefore their perturbation is homogeneous. For a subsonic outlet, static pressure is imposed and hence its perturbation
is homogeneous. For a supersonic outlet there are no boundary conditions on the perturbed variables.

2.1.2. The shock case
When a shock is present in the flow field, the above derivation is formal since U, A, and B are discontinuous at the shock. In

this case, however, Bardos and Pironneau [11,12] showed that the linearized state equation in (5) is well defined in a general-
ized function setting. Moreover, their results coincide with those obtained by Giles and Pierce [5] splitting the domain in two
regions where the solution is regular, i.e., X ¼ X� [Xþ and xsh ¼ X� \Xþ. We will also limit ourselves to this framework, and
hence the following derivation will apply before and after the shock, i.e., we will not address the issue of rigorously proving
that the second order sensitivity equations are well defined in the distribution sense in case the domain is not split.

2.2. Finite dimension design space

We choose to solve the problem in a finite design space. The channel height, hðxÞ, is composed of a seed height function,
h0ðxÞ, perturbed by a sum of N fixed shape basis functions, hiðxÞ, with the coefficients, ai, serving as the design variables:



E. Arian, A. Iollo / Journal of Computational Physics 228 (2009) 476–490 479
hðxÞ ¼ h0ðxÞ þ
XN

i¼1

aihiðxÞ:
The channel’s seed shape, h0ðxÞ is depicted in Fig. 1. We choose cubic B-Splines for the basis, hiðxÞ:
hiðxÞ ¼ B3
i ðxÞ:
Cubic B-Splines are widely used in applications and specifically in aerospace engineering. Also, for this study it will be useful
to localize the effect of the shock wave on the Hessian and cubic B-Splines are local functions. It will be shown in the fol-
lowing section that the perturbation of the shape must be regular enough at the shock location for the gradient and the Hes-
sian to exist (see Eqs. (17) and (18)). B-splines satisfy these regularity requirements.

3. Gradient and Hessian via the direct approach

Let us consider flow without shocks. For the pressure functional (3) we have
dJ
dai
¼
Z

X

op
oU

dU
dai

dx; ð7Þ
and
d2J
daidaj

¼
Z

X

o2p

oU2

dU
dai

dU
daj

dxþ
Z

X

op
oU

d2U
daidaj

dx: ð8Þ
Once the quantities dU
dai

and d2U
daidaj

are known, then first and second derivatives of the functional can be computed.
From the governing equations the sensitivity equation is easily derived (L � oR

oU),
oR
oU

dU
dai
þ oR

oh
hi ¼ 0; ð9Þ
which can be solved with homogeneous boundary conditions to get the sensitivities dU=dai. Differentiating equation (9)
with respect to aj, the second order sensitivity equation is obtained:
o2R

oU2

dU
dai

dU
daj
þ oR

oU
dU2

daidaj
þ o2R

oh2 hihj ¼ 0: ð10Þ
Once Eq. (9) is solved, we can solve equation (10) for d2U
daidaj

using homogeneous boundary conditions.
Given N design variables, N sensitivity equations (9) need to be solved to obtain the gradient, and 1

2 NðN þ 1Þ Eq. (10) to
obtain the Hessian of the objective function. With the methods presented in Section 5, OðNÞ equations need to be solved to
get the Hessian.

Note that Eqs. (9) and (10) are linear partial differential equations which differ only by the right hand side.
In the specific case of the quasi-one-dimensional Euler equation, RðU;hÞ ¼ 0, with R defined in Eq. (2), it is not necessary

to solve the sensitivity equations to get first and second derivatives of the solution with respect to the design variables (Sec-
tion 5 treats the general case). For that specific case the solution is only a function of h, if the mass flow and the boundary
conditions are fixed. Therefore for the model problem at hand the sensitivities, as well as the gradient and Hessian can be
obtained directly (or explicitly as a function of h) as explained in detail in the following.

3.1. Sensitivities via the direct approach

Let us consider for example a subsonic flow through the nozzle. In this case the boundary conditions usually prescribed
are total pressure p0, as well as total enthalpy H at the inlet and static pressure at the outlet. The flow solution is obtained by
expressing all the variables as a function of the Mach number M and observing that the mass flow _m is conserved through the
nozzle.

Specifically, the solution U ¼ ðq;qq;qEÞT depends explicitly on the Mach number M as follows:
pðMÞ ¼ p0=ð1þ ðc� 1Þ=2M2Þc=ðc�1Þ

qðMÞ ¼ ðcpðMÞM2 þ 2c=ðc� 1ÞpðMÞÞ=ð2HÞ
qðMÞ ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cpðMÞ=qðMÞ

p
EðMÞ ¼ H � pðMÞ=qðMÞ

ð11Þ
Given the static pressure at the exit we can determine the Mach number at the exit and therefore if h is given _m is fixed, as
can be shown from the following thermodynamic relation:
_m ¼ cp0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc� 1ÞH

p f ðMÞh; ð12Þ
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where c denotes the specific heat ratio and
f ðMÞ ¼ M 1þ c� 1
2

M2
� �� cþ1

2ðc�1Þ

:

Using Eq. (12) the solution in all regions can be determined.
From here on we assume that the mass flow is a constraint of the optimization problem and therefore it is constant with

respect to perturbations of the design variables,
_m ¼ const: ð13Þ
This amounts to fixing hðxÞ at the exit when the flow is subsonic. When the flow is supersonic three boundary conditions are
given at the inlet, usually p0, H and M. Therefore requiring that the mass flow is constant amounts to requiring that hðxÞ is
fixed at the inlet. In the transonic case (with or without shocks) it amounts to fixing the throat section.

For a fixed mass flow and fixed exit pressure the solution does not depend explicitly on the design variables, i.e.,
U ¼ UðMðhÞÞ (see Eq. (11)), and hence
oU
oai
¼ 0: ð14Þ
Therefore,
dU
dai
¼ dU

dM
M0ðhÞhi: ð15Þ
Notice that also in the case of transonic flow with shocks, Eq. (14) implies that the solution can be computed as an explicit
function of hðxÞ. Hence we can take advantage of that result to obtain the sensitivities directly. From Eq. (12) the derivative of
M with respect to h is given by
M0ðhÞ ¼ � f ðMÞ
hf 0ðMÞ : ð16Þ
When a shock is present in the flow field the total pressure is not constant across the shock. However, if the mass flow is
constant and the exit pressure is fixed, the jump in total pressure across the shock is constant. Therefore Eq. (12) holds
on both sides of the shock provided that one uses the correct value of the total pressure, as determined by the Rankine-
Hugoniot conditions. As a consequence, also in the case of a shocked flow the solution only depends on h.

Let us denote hsh the height of the channel at the shock location. This quantity does not depend on ai from Eq. (14). Let xsh

be defined such that hsh ¼ hðxshÞ, we obtain
dxsh

dai
¼ � hiðxÞ

h0ðxÞ

� �
sh

; ð17Þ
and
d2xsh

daidaj
¼ ðhiðxÞhjðxÞÞ0

h0ðxÞ2
� h00ðxÞ

hðxÞ3
hiðxÞhjðxÞ

" #
sh

: ð18Þ
Key observation
From the above equations we see that both the original geometry as well as the basis functions must be differentiable at

the shock for the derivatives of the shock location with respect to the design variables to exist.

3.2. Gradient and Hessian for the shockless case

We are now in the position to explicitly compute the derivative of J with respect to the design variables. In the shockless
cases we find
dJ
dai
¼
Z

X

dp
dh
ðhðxÞÞhiðxÞdx; ð19Þ
and
d2J
daidaj

¼
Z

X

d2p

dh2 ðhðxÞÞhiðxÞhjðxÞdx: ð20Þ
Fig. 2 depicts dU=dh ¼ dU=dM M0ðhÞ for a transonic flow through the nozzle shown in Fig. 1. The density (solid) and total
energy (dash-dotted) sensitivities are singular at the throat, while the mass flux (dashed) sensitivities are continuous.
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Fig. 2. Sensitivity solution for transonic flow. The solid line represent the density sensitivity, the dashed is the mass flux sensitivity, and the dash-dotted is
the total energy density sensitivity.
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3.3. Gradient and Hessian for the shock case

When shocks are present in the domain we take X ¼ X� [Xþ such that xsh ¼ X� \Xþ. In this case, the objective function
(3) can be written as follows:
J ¼
Z

X�
p�ðhðxÞÞdxþ

Z
Xþ

pþðhðxÞÞdx;
where pþðhðxÞÞ and p�ðhðxÞÞ indicate the subsonic and supersonic pressure function to the right and to the left of the shock
respectively.

The function p�ðx > xshÞ can be interpreted as the extension of the supersonic pressure after xsh, while the function
pþðx < xshÞ as the extension of the subsonic pressure before xsh. These two functions are continuous at the shock. Let us define
J�ðxÞ ¼
Z x

a
p�ðhðxÞÞdx and JþðxÞ ¼

Z b

x
pþðhðxÞÞdx;
where X ¼ ½a; b�, a < xsh < b, and a < x < b. The integrals J�ðxÞ and JþðxÞ are smooth functions of x for the pressure min-
imization problem. For the case of inverse design with a target pressure distribution that contains a shock, this argument
does not always hold, as will be discussed in the next subsection.

The gradient is given by
dJ
dai
¼
Z

X�

dp�

dh
hiðxÞdxþ

Z
Xþ

dpþ

dh
hiðxÞdx� ðpþðhðxshÞÞ � p�ðhðxshÞÞÞ

dxsh

dai
: ð21Þ
The Hessian is obtained by taking the partial derivative with respect to aj of Eq. (21). When taking the derivative of the jump
term we make use of the fact that the shock intensity does not change with the design variables,
pþðhðxshÞÞ � p�ðhðxshÞÞ ¼ const, although the shock location does move, therefore,
d2J
daidaj

¼
Z

X�

d2p�

dh2 hiðxÞhjðxÞdxþ
Z

Xþ

d2pþ

dh2 hiðxÞhjðxÞdx ð22Þ

� dpþ

dh
ðhðxshÞÞ �

dp�

dh
ðhðxshÞÞ

� �
hiðxshÞ

dxsh

daj
� ðpþðhðxshÞÞ � p�ðhðxshÞÞÞ

d2xsh

daidaj
:

3.4. The inverse design problem

Let us now consider the objective function (4). The above formulas for the gradient and Hessian hold with minor
modifications:
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dJ
dai
¼
Z

X�
ðp�ðhðxÞÞ � p�ðxÞÞ dp�

dh
hiðxÞdxþ

Z
Xþ
ðpþðhðxÞÞ � p�ðxÞÞ dpþ

dh
hiðxÞdx

� 1
2
ðpþðhðxshÞÞ � p�ðxshÞÞ2 � ðp�ðhðxshÞÞ � p�ðxshÞÞ2
� �dxsh

dai
: ð23Þ

d2J
daidaj

¼
Z

X�

dp�

dh

� �2

þ p�ðhðxÞÞ � p�ðxÞð Þ d
2p�

dh2

 !
hiðxÞhjðxÞdx

þ
Z

Xþ

dpþ

dh

� �2

þ pþðhðxÞÞ � p�ðxÞð Þ d
2pþ

dh2

 !
hiðxÞhjðxÞdx

� pþðhðxshÞÞ � p�ðxshÞð Þ dpþ

dh
ðhðxshÞÞ � ðp�ðhðxshÞÞ � p�ðxshÞÞ

dp�

dh
ðhðxshÞÞ

� �
hiðxshÞ

dxsh

daj

� 1
2
ðpþðhðxshÞÞ � p�ðxshÞÞ2 � ðp�ðhðxshÞÞ � p�ðxshÞÞ2
� � d2xsh

daidaj
: ð24Þ
The target pressure distribution p� is in principle arbitrary. In the case that it is discontinuous at xsh, then the functional inte-
grands ðp�ðhðxÞÞ � p�ðxÞÞ2 and ðpþðhðxÞÞ � p�ðxÞÞ2 contain a jump at the shock. Therefore the integrals
J�ðxÞ ¼
Z x

a

1
2
ðp�ðhðxÞÞ � p�ðxÞÞ2dx and JþðxÞ ¼

Z b

x

1
2
ðpþðhðxÞÞ � p�ðxÞÞ2dx;
have a discontinuous derivative at x ¼ xsh. As a result both the gradient and the Hessian do not exist at that point. An exam-
ple of such a situation is given in Section 4.2.

4. Computational results using the direct method

The flow conditions for all the cases below are p0 ¼ 2, H ¼ 4 at the inlet. For the cases with a shock p ¼ 1:1 at the outlet.
The geometry is defined by X ¼ ½�1;1� and h0ðxÞ ¼ 2 for �1 � x < �1=2, h0ðxÞ ¼ 1þ sin2ðpxÞ for �1=2 6 x 6 1=2, and
h0ðxÞ ¼ 2 for 1=2 < x 6 1. With these conditions a shock is present in the flow field at xsh ¼ 0:3941, corresponding to a chan-
nel height of 1:893.

The B-splines basis functions are uniformly distributed starting after the throat and in the diverging part of the nozzle. We
denote by N the number of collocation points in the interval ½0:1;0:5�. The support of the basis functions is compact, hiðxÞ is
non-zero only between the collocation point i� 2 and iþ 2. This allows the study of the effect induced by localized geomet-
rical perturbations on the flow.

4.1. Pressure minimization

We compute the condition number of the Hessian for the pressure minimization objective function (3) as a function of the
number of design variables. We consider three cases: a subsonic flow, a transonic flow with supersonic exit, and a transonic
shocked flow, see Fig. 3. In the subsonic case p ¼ 1:98 at the outlet, whereas in the transonic case the nozzle is adapted. In the
supersonic case M ¼ 3 at the inlet.
2.4 2.6 2.8 3.0 3.2 3.4 3.6
Log N

3

4

5

6

7

8

9

Log COND

. 3. Hessian Condition number (Cond) as a function of design space size (N). Subsonic case (dot-dashed), transonic (dashed), shocked (solid).
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Fig. 4. Pressure minimization problem. The solid line (circles) represents the gradient, the dashed (squares) represents the gradient pre-multiplied by the
inverse of the Hessian.
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For the shocked case the condition number increases significantly as the number of design variables increases, whereas
for the subsonic or the transonic cases it stays almost unchanged. In the presence of a shock, larger and larger numbers are
obtained close to the Hessian diagonal as the number of design variables increases (see Fig. 5) resulting in a larger condition
number. This behavior is due to the fact that the splines become more and more localized, steeper (non-differentiable at the
limit), and therefore the large values around the diagonal at the shock location is a direct consequence of Eq. (18). For the
shocked case, in Fig. 4, we show the gradient as well as the gradient pre-multiplied by the inverse of the Hessian as a function
of the corresponding B-spline collocation point. The gradient curve is proportional to the shape update (Da) in a steepest
descent optimization method. On the other hand, the plot of the gradient pre-multiplied by the inverse of the Hessian in-
verse represents the correction to a given shape in a Newton’s method. The two curves are strikingly different.

4.2. The inverse problem

We calculate the Hessian for the inverse problem consisting in minimizing the objective function defined in Eq. (4). The
minimum is given by the values of the design variables that were used to compute the target pressure p�. In this case the
target pressure is that relative to the unperturbed geometry h0ðxÞ. Hence, in addition to what was shown for the previous
case, we are able to show the plot of the error, i.e., the difference between the present value of the design variable and
the value corresponding to the minimum.

The number of design variables considered is N ¼ 20. The position of the shock can be perturbed by shape function num-
ber 4, 5, and 6 (due to their collocation). Indeed, in Fig. 5 we can observe the presence of large values on the 4th, 5th and 6th
columns. In Fig. 6 one can see that the inverse of the Hessian gives an appropriate correction to the gradient by shifting the
curve’s peak to the left, the location of the only non-zero component of the error. In fact, we have only perturbed shape func-
tion 6.

Finally, we study the case where the target pressure distribution p� has a shock located at an identical location as the
shock of the pressure, p, for the current geometry. As discussed earlier the objective function integrand does not have con-
tinuous prolongations from the left and from the right at the shock location, and hence the objective function is not differ-
entiable with respect to those shape functions that can perturb the shock. We took 10 B-spline evenly distributed between
x ¼ 0:05 and x ¼ 1=2. The pressure at the exit is pex ¼ 1:1 and the reference pressure p�ðxÞ corresponds to the unperturbed
nozzle shape. Under these conditions the shock is again located at xsh ¼ 0:3941. In Fig. 7 we show the functional value when
a2 is varied between �0.01 and 0.01. This design variable does not perturb the shock. In contrast, Fig. 8 depicts the value of
Fig. 5. The Hessian for the inverse problem minimizing the integral of ðp� p�Þ2=2. Since the shape functions are local B-Splines, it is possible to relate the
location of the shock wave with the 4th, 5th and 6th column of the Hessian having significantly larger values.
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Fig. 6. The solid line (circles) represents the gradient, dashed (squares) represents the gradient pre-multiplied by the inverse of the Hessian, and the dot-
dashed (diamonds) represents the error. (Inverse problem with a design space consisting of N ¼ 20 design variables.)
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Fig. 7. The objective function as a function of the single design variable a2. The objective function in this case is the inverse problem minimizing the integral
of ðp� p�Þ2=2. The two shocks (in both p and p�) are aligned and the design variable does not perturb the shock location. The resulting curve is smooth
indicating the existence of the Hessian in this case.
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the functional when �0:01 6 a8 6 0:01. The corresponding shape function does perturb the shock and when the two shocks
are aligned, for a8 ¼ 0, the functional is not differentiable. However, we speculate that in many practical computations the
shock wave is smeared on a few grid points due to artificial or physical dissipation, and the issue of non-differentiability may
not be observed.

5. Gradient and Hessian derivatives via adjoint equation approach

The direct method presented in Sections 3 and 4 was very useful to analyze the model problem at hand, but it is not prac-
tical for industrial applications. In general we can not represent the solution as an explicit function of the geometry.

In this section we develop two methods that are viable for industrial applications, and that are based on the adjoint
method.

5.1. The gradient via the adjoint method

The adjoint representation of the gradient is given by
dJ
dai
¼
Z

X
vT fidx; ð25Þ
where (recall that L ¼ oR
oU and �fi ¼ oR

oai
)

fi ¼
ohi

ox
P � d

dx
ðhiFÞ

� �
: ð26Þ
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Fig. 8. The objective function as a function of a single design variable a8. The objective function in this case is the inverse problem minimizing the integral
of ðp� p�Þ2=2. The two shocks (in both p and p�) are aligned and the design variable does perturb the shock location. The resulting curve is not smooth at the
shock indicating that the Hessian (and gradient) do not exist in this case.
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The adjoint v satisfies the adjoint equation
L�v ¼ op
oU

; ð27Þ
where the application of the adjoint linearized operator is given explicitly by,
L�v � �hAT dv
dx
� dh

dx
BT v: ð28Þ
5.2. Analytical derivation of the Hessian method I: Oð2N þ 1Þ linear solutions

The formal expression for the element ði; jÞ of the Hessian is given by:
d2J
daidaj

¼
Z

X

dv
daj

� �T

fi þ vT dfi

daj

" #
dx: ð29Þ
We observe that applying the above formula to a case where shocks are present in the flow, the term fi is discontinuous at the
shock (Heaviside function) and the adjoint v has a log singularity at the throat but is continuous at the shock [5]. The term dfi

daj

contains a delta function at the shock since the pressure, p, contains a Heaviside function.
The term fi depends on the design variables implicitly via the sensitivities. Its derivative with respect to aj is given by,
dfi

daj
¼ � oL

oai

dU
daj

: ð30Þ
We take the derivative of the adjoint equation to obtain an equation for the adjoint sensitivity, dv=daj:
L�
dv
daj
¼ � dL�

daj
vþ dU

daj

og
oU

; ð31Þ
where g denotes the right hand side (RHS) of the adjoint equation (27) given by
g ¼ op
oU

: ð32Þ
Eq. (31) is similar to the adjoint equation but with a different right hand side. Denoting the RHS of Eq. (31) by Gj, we have
L�
dv
daj
¼ Gj: ð33Þ
In terms of Gj the Hessian can be written as follows:
d2J
daidaj

¼
Z

X
½fiL
��Gjdxþ vT dfi

daj
�dx: ð34Þ
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5.2.1. Derivation of the RHS of the adjoint sensitivity equation
The RHS of Eq. (31) Gj, can be represented as follows:
Gj ¼ �
oL�

oaj
v� dU

daj

oL�

oU
vþ dU

daj

o2p

oU2 ; ð35Þ
where the adjoint operator L� has been differentiated by parts:
dL�

daj
¼ oL�

oaj
þ dU

daj

oL�

oU
: ð36Þ
Recall that the application of the adjoint operator on the derivative term is defined by,
L�
dv
daj
� �hAT d

dx
dv
daj
� dh

dx
BT dv

daj
:

The cost of method I is the solution of N sensitivity equations, N adjoint sensitivity equations, and 1 additional adjoint equa-
tion; all together 2N þ 1 linear equations. The terms LU ; La and JUU ; JUa need to be computed as well. In particular the term
containing the second order Jacobian tensor, JUU , may be difficult to implement using modern CFD codes.

5.3. Analytical derivation of the Hessian method II: OðN þ 1Þ linear solutions

Our starting point is Eq. (29):
Pði; jÞ � d2J
daidaj

¼
Z

X

dv
daj

� �T

fi þ vT dfi

daj

" #
dx: ð37Þ
5.3.1. The term vTðdfi=dajÞ
The derivative of fi is computed explicitly from Eq. (26):
dfi

daj
¼ � d

daj

oR
oai
¼ � oR2

oaioaj
� o

oU
oR
oai

dU
daj
¼ � oL

oai

dU
daj

; ð38Þ
where the second derivative with respect to a can be eliminated, since the residual R is linear in the design variables:
oR2

oaioaj
¼ 0:
5.3.2. The term ðdv=dajÞT fi

The adjoint sensitivity term is derived by first considering the sensitivity equation:
oR
oU

dU
dai
þ oR

oai
¼ 0:
In terms of the sensitivities we can write
fi ¼ �
oR
oai
¼ L

dU
dai

:

Therefore,
Z
X

dv
daj

� �T

fidx ¼
Z

X

dv
daj

� �T

L
dU
dai

dx:
Taking the adjoint of the right hand side integrand we get (using the identity, L� dv
daj
¼ Gj, and Gj is given by Eq. (35)),
Z
X

dv
daj

� �T

fidx ¼
Z

X

dU
dai

T

L�
dv
daj

dx ¼
Z

X

dU
dai

T
o2p

oU2

dU
daj
� oL�

oU
dU
daj
þ oL�

oaj

� �
v

 !
dx ð39Þ
5.3.3. The Hessian in matrix form
Substituting relations (38) and (39) in (37) and rearranging terms, the Hessian can be represented in the following ma-

trix–vector form:
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Pði; jÞ ¼
Z

X

dU
dai

1

" #T
o2p
oU2

T
0

0 0

" #
� v�

oL�

oU
oL�

oaj

oL
oai

0

" #( )
dU
daj

1

" #
dx ð40Þ
The notation � is introduced in order to clarify the application of the operators in the integrand on the sensitivities and ad-
joint variables. It should be interpreted as follows:
v� oL�

oU
dU
daj
¼ oL�

oU
dU
daj

� �
	 v

v� oL�

oaj
¼ oL�

oaj
ðvÞ

v� oL
oai

dU
daj
¼ v 	 oL

oai

dU
daj

� �
where the parenthesis AðxÞ denotes the action of an operator A on x, and the dot v 	 x denotes a dot product between v and x.
The cost of method II consists of solving N linear sensitivity equations, and 1 additional adjoint equation; all together

N þ 1 linear equations. As in method I, the terms LU ; La and JUU ; JUa need to be computed as well.
Although method II seems to have an advantage over method I with regards to computational cost, we suspect that meth-

od II is likely to be more delicate in practice for flows with shocks, based on the following argument. In the Hessian repre-
sentation given by Eq. (40) the terms dU

dai
, and dU

daj
contain a delta function at the shock, while the terms oL

oaj
, oL�

oaj
, oL�

oU and o2p
oU2 contain

a Heaviside function. As mentioned before the adjoint variable, v, is continuous at the shock. The numerical implementation
of Eq. (40) may be more delicate compared to that of Eq. (29) since some of the terms involve multiplication of delta func-
tions at the shock. This is not the case for the Hessian representation of method I (recall the observation we have made fol-
lowing Eq. (29)).

In the case of shocked flow for which the domain is not splitted to shockless subdomains, a more rigorous mathematical
treatment is required to show that Eq. (40) can be interpreted in the sense of generalized functions, similar to the analysis
done for the gradient in [11] and [12]. This is beyond the scope of this paper and is left for future investigation.

6. Numerical verification of the adjoint based methods for supersonic flow

We demonstrate the two methods on the model problem for shockless flow. In the quasi-one-dimensional approximation
the domain can always be split into sub-regions where the solution is non-singular. We show here that the two methods
yield the same results as the direct approach for a shockless case. The case considered is supersonic. The nozzle geometry
is the same as that in previous sections. At the inlet the total pressure is given, p0 ¼ 2, as well as total enthalpy H ¼ 4
and Mach number M ¼ 3. We consider a pressure minimization objective function over X ¼ ½�1;1�. The shape functions
are 10 B-splines with support evenly distributed in the interval ½�1=2;1=2�. All the calculations are done using the Mathem-
atica� symbolic manipulation software.

The Hessian is first determined by the direct method, Eq. (20), on the unperturbed nozzle, to obtain a reference point. The
result is shown in Fig. 9 and later compared with results obtained using the adjoint based methods.

6.1. Adjoint method I: Oð2N þ 1Þ linear solutions

The Hessian representation by Eq. (29) requires the adjoint solution and its sensitivity derivatives. The adjoint is calcu-
lated following the Green’s function method presented in [5]. In the following, the adjoint sensitivity derivatives are calcu-
lated in a similar manner for supersonic flow condition.

We make use of the Lagrange identity for this case (j ¼ 1; . . . ;N and k ¼ 1;2;3):
ðGj; ukÞ ¼
dv
daj

; ~dk

� �
: ð41Þ
Eq. (41) is a direct consequence of the adjoint definition:
Fig. 9. Hessian by the direct method for supersonic flow condition (explicit).
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L�
dv
daj

;uk

� �
¼ dv

daj
; Luk

� �
:

The left hand side of Eq. (41) is defined explicitly by,
ðGj; ukÞ �
Z 1

�1
GjðxÞukðxÞdx:
The right hand side is defined by,
dv
daj

; ~dk

� �
�
Z 1

�1

dv
daj
ðxÞdkðxÞdðx� nÞdx;
where dðxÞ denotes the delta function at x.
The functions uk are assumed to be the solutions of the following linearized equation corresponding to three independent

right hand sides dk:
Luk ¼ dkdðx� nÞ: ð42Þ
In the supersonic case dk is given by the columns of the matrix DðxÞ, and D is defined by:
D ¼
1 �hqq=ð2HÞ hqq=p0

q 0 hðqq2 þ pÞ=p0

H hqq=2 hqqH=p0:

0
B@

1
CA
The solutions of Eq. (42) are found in terms of the fundamental components (see [5])
1
h

oU
om

� 				
H;p0

;
oU
oH

					
p0 ;M

;
oU
op0

				
H;M

1
A: ð43Þ
For supersonic flow the Mach number, M, the enthalpy, H, and the total pressure, p0, are fixed at the inlet and there are no
boundary conditions at the outlet, resulting in
u1ðx; nÞ ¼ Hðx� nÞ 1
hðxÞ

oU
om ðxÞ

			
H;p0

u2ðx; nÞ ¼ Hðx� nÞ oU
oH ðxÞ

		
p0 ;M

u3ðx; nÞ ¼ Hðx� nÞ oU
op0 ðxÞ

			
H;M

;

where HðxÞ is the Heaviside function of x. Each of the above three partial derivatives, (43), has to be evaluated for the three
fundamental variables, U ¼ ðq;qq;qEÞT .

The following matrix contains the key information required:
v ¼

1
h

oq
om

		
H;p0

oq
oH

		
p0 ;M

oq
op0

			
H;M

1
h

om
oH

		
p0 ;M

om
op0

			
H;M

1
h

oqE
om

		
H;p0

oqE
oH

		
p0 ;M

oqE
op0

			
H;M

:

2
666664

3
777775 ð44Þ
In terms of v the solutions uk can be written as follows:
U ¼ vA;
where uk form the columns of the matrix U, and where the columns of the matrix A are the three coefficient vectors
A ¼
Hðx� nÞ 0 0

0 Hðx� nÞ 0
0 0 Hðx� nÞ

2
64

3
75: ð45Þ
In terms of the above definitions, the adjoint sensitivity can be written in matrix notation as follows:
dv
dam
ðnÞ ¼ D�1ðnÞ

Z 1

n
GmðxÞvðxÞdx

� �
: ð46Þ
The results are presented in Fig. 10. The numerical results for the Hessian, as computed by method I, coincide with the ref-
erence solution, computed by the direct method, up to a numerical error. Let P be the Hessian, we have kPdirect�
Pmethod Ik=kPdirectk ¼ 1:5
 10�4. The source of numerical errors is primarily the numerical integration procedure, that is ap-
plied multiple times.



Fig. 10. Hessian by the adjoint method I for supersonic flow condition (Oð2N þ 1Þ linear solutions).

Fig. 11. Hessian by adjoint method II for supersonic flow condition (OðN þ 1Þ linear solutions).
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6.2. Adjoint method II: OðN þ 1Þ linear solutions

The Hessian representation by Eq. (40) does not require the adjoint sensitivity derivatives. In that sense method II is sim-
pler to implement, it requires only the sensitivities and adjoint solutions. The result is demonstrated in Fig. 11. In this case
the numerical results have a smaller numerical integration error compared with method I: kPdirect �Pmethod IIk=
kPdirectk ¼ 2:4
 10�6. Method I is less accurate since there is one more integration involved to compute the adjoint sensitiv-
ities, as opposed to method II where we integrate only once to compute the adjoint variables. This result indicates that in
practice method I will require a tighter convergence tolerance than method II in order to achieve a similar accuracy.

7. Discussion

Industrial aerodynamic optimization problems are usually defined by hundreds of design variables and millions of state
variables. The state-of-the-art practice is to use the adjoint method to compute the gradient, and quasi-Newton method to
accelerate the convergence. Quasi-Newton approximates the Hessian (or its inverse) by a low rank update method taking the
identity matrix to be the initial guess. That choice corresponds to having the gradient as the initial search direction in the
optimization process. Fig. 6 demonstrates how the gradient can serve as a poor search direction; the solid line (circles) rep-
resents the gradient and the dot-dashed line (diamonds) represents the error. The gradient is both quantitatively and qual-
itatively pointing in the wrong direction. For practical industrial aerodynamic optimization problems only a few iterations
can be afforded, resulting in poor convergence. Therefore, we think that direct approximation of the Hessian is essential to
achieve convergence in a relatively small number of iterations. Such an approximation can serve as the initial guess for a
quasi-Newton method.

In this work we compute the Hessian analytically for an optimal shape design problem governed by the quasi-one-dimen-
sional Euler equations, modeling inviscid flow in a channel. For that ideal model problem we can study the Hessian directly
by representing the flow, sensitivity, and adjoint solutions as explicit functions of the design variables. That allows us to ex-
plore the question of Hessian existence in aerodynamic optimization problems under transonic flow with shocks. The Hes-
sian exists in the strong sense if the objective function is twice differentiable at every design point. Fig. 8 serves as an
example to the lack of smoothness that may occur in such problems. The objective function as a function of one of the design
variables (a8) is not smooth at a8 ¼ 0, thus both the gradient and the Hessian do not exist at that point. We think that more
research is required to further understand the existence of the gradient and Hessian in the presence of shocks, particularly at
the discrete level where the choice of numerical scheme may make a difference.

We also propose two formulations to approximate the Hessian that can be applied to general problems for which the di-
rect approach is not practical. These formulations are based on the adjoint and sensitivity solutions. The first method is more
expensive. It requires solving the adjoint sensitivity equations in addition to the standard sensitivity equations and adjoint
equation (Oð2N þ 1Þ linear solutions), while the second method requires only the sensitivity and adjoint equations (OðN þ 1Þ
linear solutions). In practice the Hessian is used to obtain an improved search direction by preconditioning the gradient and
therefore only an approximated Hessian is required. The computational effort can be greatly reduced by a number of ways,
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for example by converging the sensitivity equations only to a low tolerance value. Also, the sensitivity equations system is
easily parallizable as it consists of a single operator with many right hand sides.

The preliminary analysis presented in this paper suggests that the first method, although more expansive, may be more
stable, since the second method involves multiplications of delta functions (d2) at the shock location suggesting large num-
bers in the numerical computation (see discussion at the end of Section 5). We demonstrate the application of the proposed
two adjoint based methods on the model problem for supersonic flow. More research is required to better understand, from a
numerical analysis view point, method I and method II to compute the Hessian. This is left for future study.
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